A Two-Component Deep Learning Network for SAR Image Denoising
نویسندگان
چکیده
منابع مشابه
Deep Learning for Image Denoising
Deep learning is an emerging approach for finding concise, slightly higher level representations of the inputs, and has been successfully applied to many practical learning problems, where the goal is to use large data to help on a given learning task. We present an algorithm for image denoising task defined by this model, and show that by training on large image databases we are able to outper...
متن کاملExtending SAR Image Despckling methods for ViSAR Denoising
Synthetic Aperture Radar (SAR) is widely used in different weather conditions for various applications such as mapping, remote sensing, urban, civil and military monitoring. Recently, a new radar sensor called Video SAR (ViSAR) has been developed to capture sequential frames from moving objects for environmental monitoring applications. Same as SAR images, the major problem of ViSAR is the pres...
متن کاملDeep Learning Approach for Image Denoising and Image Demosaicing
Color image normally contain of three main colors at the each pixel, but the digital cameras capture only one color at each pixel using color filter array (CFA). While through capturing in color image, some noise/artifacts is added. So, the both demosaicing and de-noising are the first essential task in digital camera. Here, both the technique can be solve sequentially and independently. A conv...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملDenoising Prior Driven Deep Neural Network for Image Restoration
Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image deg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2965173